Local instability of a rotating flow driven by precession of arbitrary frequency

Me Me Naing, Y. Fukumoto

研究成果: Contribution to journalArticle

2 引用 (Scopus)

抜粋

We revisit the local stability, to three-dimensional disturbances, of rotating flows with circular streamlines, whose rotation axis executes constant precessional motion about an axis perpendicular to itself. In the rotating frame, the basic flow is steady velocity field linear in coordinates in an unbounded domain constructed by Kerswell (1993 Geophys. Astrophys. Fluid Dyn. 72 107-44), and admits the use of the Wentzel-Kramers-Brillouin (WKB) method. For a small precession frequency, we recover Kerswell's result. A novel instability is found at a large frequency for which the axial wavenumber executes an oscillation around zero; significant growth of the disturbance amplitude occurs in a very short time interval only around the time when the axial wavenumber vanishes. In the limit of infinite precession frequency, the growth rate exhibits singular behavior with respect to a parameter characterizing the tilting angle of the wave vector.

元の言語英語
記事番号055502
ジャーナルFluid Dynamics Research
43
発行部数5
DOI
出版物ステータス出版済み - 10 1 2011

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Physics and Astronomy(all)
  • Fluid Flow and Transfer Processes

フィンガープリント Local instability of a rotating flow driven by precession of arbitrary frequency' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用