TY - JOUR
T1 - Local stability analysis of the azimuthal magnetorotational instability of ideal MHD flows
AU - Zou, Rong
AU - Fukumoto, Yasuhide
N1 - Publisher Copyright:
© The Author(s) 2014.
PY - 2014
Y1 - 2014
N2 - A local stability analysis is carried out of axisymmetric rotating flows of a perfectly conducting fluid subjected to an external azimuthal magnetic field Bθ to non-axisymmetric as well as axisymmetric perturbations. We use the Hain-Lüst equation, capable of dealing with perturbations over a wide range of the axial wavenumber k, which supplements the previous results of |k| → ∞ [G. I. Ogilvie and J. E. Pringle, Mon. Not. R. Astron. Soc. 279, 152 (1996)]. When the magnetic field is sufficiently weak, instability occurs for Ro = rΩ′/(2Ω) < Roc with Roc close to zero, with the maximum growth rate given by the Oort A-value |Ro|, where Ω(r) is the angular velocity of the rotating flow as a function only of r, the distance from the axis of symmetry, and the prime designates the derivative in r. As the magnetic field is increased the flow becomes unstable to waves of long axial wavelength for a finite range of Ro around 0 when Rb = r2(Bθ/r)′/(2Bθ) < -1/4 with growth rate proportional to |Bθ|, giving unstable rotating flows under the current-free background magnetic field.
AB - A local stability analysis is carried out of axisymmetric rotating flows of a perfectly conducting fluid subjected to an external azimuthal magnetic field Bθ to non-axisymmetric as well as axisymmetric perturbations. We use the Hain-Lüst equation, capable of dealing with perturbations over a wide range of the axial wavenumber k, which supplements the previous results of |k| → ∞ [G. I. Ogilvie and J. E. Pringle, Mon. Not. R. Astron. Soc. 279, 152 (1996)]. When the magnetic field is sufficiently weak, instability occurs for Ro = rΩ′/(2Ω) < Roc with Roc close to zero, with the maximum growth rate given by the Oort A-value |Ro|, where Ω(r) is the angular velocity of the rotating flow as a function only of r, the distance from the axis of symmetry, and the prime designates the derivative in r. As the magnetic field is increased the flow becomes unstable to waves of long axial wavelength for a finite range of Ro around 0 when Rb = r2(Bθ/r)′/(2Bθ) < -1/4 with growth rate proportional to |Bθ|, giving unstable rotating flows under the current-free background magnetic field.
UR - http://www.scopus.com/inward/record.url?scp=84942518221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942518221&partnerID=8YFLogxK
U2 - 10.1093/ptep/ptu139
DO - 10.1093/ptep/ptu139
M3 - Article
AN - SCOPUS:84942518221
SN - 2050-3911
VL - 2014
JO - Progress of Theoretical and Experimental Physics
JF - Progress of Theoretical and Experimental Physics
IS - 11
M1 - 113J01
ER -