Logarithmic Sobolev Inequality on Free Loop Groups for Heat Kernel Measures Associated with the General Sobolev Spaces

研究成果: ジャーナルへの寄稿学術誌査読

8 被引用数 (Scopus)

抄録

In this paper we will prove the logarithmic Sobolev inequality on free loop groups for various heat kernel measures which P. Malliavin (1989, 1991, in "Diffusion Process and Related Problems in Analysis (M. A. Pinsley, Ed.), Vol. I, Birkhäuser, Basel) constructed. Those measures are associated with the Sobolev spaces of order s (s>1/2) of the free loops in the Lie algebra. We will equipp the free loop groups with those metrics and will show that a formula of Weitzenböck type holds, which enables us to apply the method of Driver and Lohrenz (1996, J. Funct. Anal.146, 381-448).

本文言語英語
ページ(範囲)170-213
ページ数44
ジャーナルJournal of Functional Analysis
179
1
DOI
出版ステータス出版済み - 1月 10 2001
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 分析

フィンガープリント

「Logarithmic Sobolev Inequality on Free Loop Groups for Heat Kernel Measures Associated with the General Sobolev Spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル