Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions

Satoshi Masaki, Jun ichi Segata, Kota Uriya

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

In this paper, we study large time behavior of complex-valued solutions to nonlinear Klein-Gordon equation with a gauge invariant quadratic nonlinearity in two spatial dimensions. To find a possible asymptotic behavior, we consider the final value problem. It turns out that one possible behavior is a linear solution with a logarithmic phase correction as in the real-valued case. However, the shape of the logarithmic correction term has one more parameter which is also given by the final data. In the real case the parameter is constant so one cannot see its effect. However, in the complex case it varies in general. The one dimensional case is also discussed.

本文言語英語
ページ(範囲)177-203
ページ数27
ジャーナルJournal des Mathematiques Pures et Appliquees
139
DOI
出版ステータス出版済み - 7月 2020

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル