Long range scattering for the nonlinear Schrödinger equation with higher order anisotropic dispersion in two dimensions

Jean Claude Saut, Jun ichi Segata

研究成果: ジャーナルへの寄稿学術誌査読

4 被引用数 (Scopus)

抄録

This paper is a continuation of our previous study [13] on the long time behavior of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion (4NLS). We prove the long range scattering for (4NLS) with the quadratic nonlinearity in two dimensions. More precisely, for a given asymptotic profile u+, we construct a solution to (4NLS) which converges to u+ as t→∞, where u+ is given by the leading term of the solution to the linearized equation of (4NLS) with a logarithmic phase correction.

本文言語英語
論文番号123638
ジャーナルJournal of Mathematical Analysis and Applications
483
2
DOI
出版ステータス出版済み - 3月 15 2020
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 分析
  • 応用数学

フィンガープリント

「Long range scattering for the nonlinear Schrödinger equation with higher order anisotropic dispersion in two dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル