Longest lyndon substring after edit

研究成果: 著書/レポートタイプへの貢献会議での発言

1 引用 (Scopus)

抄録

The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T′) where T′ is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(l log σ + log n) time for any block edit where σ is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T′ for both problems.

元の言語英語
ホスト出版物のタイトル29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
編集者Binhai Zhu, Gonzalo Navarro, David Sankoff
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ページ191-1910
ページ数1720
ISBN(電子版)9783959770743
DOI
出版物ステータス出版済み - 5 1 2018
イベント29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 - Qingdao, 中国
継続期間: 7 2 20187 4 2018

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
105
ISSN(印刷物)1868-8969

その他

その他29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
中国
Qingdao
期間7/2/187/4/18

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Urabe, Y., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2018). Longest lyndon substring after edit. : B. Zhu, G. Navarro, & D. Sankoff (版), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 (pp. 191-1910). (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 105). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2018.19

Longest lyndon substring after edit. / Urabe, Yuki; Nakashima, Yuto; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 版 / Binhai Zhu; Gonzalo Navarro; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. p. 191-1910 (Leibniz International Proceedings in Informatics, LIPIcs; 巻 105).

研究成果: 著書/レポートタイプへの貢献会議での発言

Urabe, Y, Nakashima, Y, Inenaga, S, Bannai, H & Takeda, M 2018, Longest lyndon substring after edit. : B Zhu, G Navarro & D Sankoff (版), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Leibniz International Proceedings in Informatics, LIPIcs, 巻. 105, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 191-1910, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018, Qingdao, 中国, 7/2/18. https://doi.org/10.4230/LIPIcs.CPM.2018.19
Urabe Y, Nakashima Y, Inenaga S, Bannai H, Takeda M. Longest lyndon substring after edit. : Zhu B, Navarro G, Sankoff D, 編集者, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2018. p. 191-1910. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.CPM.2018.19
Urabe, Yuki ; Nakashima, Yuto ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Longest lyndon substring after edit. 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 編集者 / Binhai Zhu ; Gonzalo Navarro ; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. pp. 191-1910 (Leibniz International Proceedings in Informatics, LIPIcs).
@inproceedings{083e22229b90499eac349593e5ba0400,
title = "Longest lyndon substring after edit",
abstract = "The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T′) where T′ is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(l log σ + log n) time for any block edit where σ is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T′ for both problems.",
author = "Yuki Urabe and Yuto Nakashima and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2018",
month = "5",
day = "1",
doi = "10.4230/LIPIcs.CPM.2018.19",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "191--1910",
editor = "Binhai Zhu and Gonzalo Navarro and David Sankoff",
booktitle = "29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018",

}

TY - GEN

T1 - Longest lyndon substring after edit

AU - Urabe, Yuki

AU - Nakashima, Yuto

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2018/5/1

Y1 - 2018/5/1

N2 - The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T′) where T′ is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(l log σ + log n) time for any block edit where σ is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T′ for both problems.

AB - The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T′) where T′ is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T′) in O(l log σ + log n) time for any block edit where σ is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T′ for both problems.

UR - http://www.scopus.com/inward/record.url?scp=85048299606&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048299606&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.CPM.2018.19

DO - 10.4230/LIPIcs.CPM.2018.19

M3 - Conference contribution

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 191

EP - 1910

BT - 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018

A2 - Zhu, Binhai

A2 - Navarro, Gonzalo

A2 - Sankoff, David

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -