Longest substring palindrome after edit

研究成果: 著書/レポートタイプへの貢献会議での発言

1 引用 (Scopus)

抄録

It is known that the length of the longest substring palindromes (LSPals) of a given string T of length n can be computed in O(n) time by Manacher's algorithm [J. ACM '75]. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(log(min{ω, log n})) time after single character substitution, insertion, or deletion, where ω denotes the number of distinct characters appearing in T. We also propose an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(ℓ+log n) time, after an existing substring in T is replaced by a string of arbitrary length ℓ.

元の言語英語
ホスト出版物のタイトル29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
編集者Binhai Zhu, Gonzalo Navarro, David Sankoff
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ページ121-1214
ページ数1094
ISBN(電子版)9783959770743
DOI
出版物ステータス出版済み - 5 1 2018
イベント29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 - Qingdao, 中国
継続期間: 7 2 20187 4 2018

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
105
ISSN(印刷物)1868-8969

その他

その他29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
中国
Qingdao
期間7/2/187/4/18

Fingerprint

Substitution reactions

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Funakoshi, M., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2018). Longest substring palindrome after edit. : B. Zhu, G. Navarro, & D. Sankoff (版), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 (pp. 121-1214). (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 105). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2018.12

Longest substring palindrome after edit. / Funakoshi, Mitsuru; Nakashima, Yuto; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 版 / Binhai Zhu; Gonzalo Navarro; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. p. 121-1214 (Leibniz International Proceedings in Informatics, LIPIcs; 巻 105).

研究成果: 著書/レポートタイプへの貢献会議での発言

Funakoshi, M, Nakashima, Y, Inenaga, S, Bannai, H & Takeda, M 2018, Longest substring palindrome after edit. : B Zhu, G Navarro & D Sankoff (版), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Leibniz International Proceedings in Informatics, LIPIcs, 巻. 105, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 121-1214, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018, Qingdao, 中国, 7/2/18. https://doi.org/10.4230/LIPIcs.CPM.2018.12
Funakoshi M, Nakashima Y, Inenaga S, Bannai H, Takeda M. Longest substring palindrome after edit. : Zhu B, Navarro G, Sankoff D, 編集者, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2018. p. 121-1214. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.CPM.2018.12
Funakoshi, Mitsuru ; Nakashima, Yuto ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Longest substring palindrome after edit. 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 編集者 / Binhai Zhu ; Gonzalo Navarro ; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. pp. 121-1214 (Leibniz International Proceedings in Informatics, LIPIcs).
@inproceedings{3ba69088c65b40af859f1f1ef9af4c2f,
title = "Longest substring palindrome after edit",
abstract = "It is known that the length of the longest substring palindromes (LSPals) of a given string T of length n can be computed in O(n) time by Manacher's algorithm [J. ACM '75]. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(log(min{ω, log n})) time after single character substitution, insertion, or deletion, where ω denotes the number of distinct characters appearing in T. We also propose an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(ℓ+log n) time, after an existing substring in T is replaced by a string of arbitrary length ℓ.",
author = "Mitsuru Funakoshi and Yuto Nakashima and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2018",
month = "5",
day = "1",
doi = "10.4230/LIPIcs.CPM.2018.12",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "121--1214",
editor = "Binhai Zhu and Gonzalo Navarro and David Sankoff",
booktitle = "29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018",

}

TY - GEN

T1 - Longest substring palindrome after edit

AU - Funakoshi, Mitsuru

AU - Nakashima, Yuto

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2018/5/1

Y1 - 2018/5/1

N2 - It is known that the length of the longest substring palindromes (LSPals) of a given string T of length n can be computed in O(n) time by Manacher's algorithm [J. ACM '75]. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(log(min{ω, log n})) time after single character substitution, insertion, or deletion, where ω denotes the number of distinct characters appearing in T. We also propose an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(ℓ+log n) time, after an existing substring in T is replaced by a string of arbitrary length ℓ.

AB - It is known that the length of the longest substring palindromes (LSPals) of a given string T of length n can be computed in O(n) time by Manacher's algorithm [J. ACM '75]. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(log(min{ω, log n})) time after single character substitution, insertion, or deletion, where ω denotes the number of distinct characters appearing in T. We also propose an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(ℓ+log n) time, after an existing substring in T is replaced by a string of arbitrary length ℓ.

UR - http://www.scopus.com/inward/record.url?scp=85048251502&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048251502&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.CPM.2018.12

DO - 10.4230/LIPIcs.CPM.2018.12

M3 - Conference contribution

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 121

EP - 1214

BT - 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018

A2 - Zhu, Binhai

A2 - Navarro, Gonzalo

A2 - Sankoff, David

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -