抄録
We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.
元の言語 | 英語 |
---|---|
ホスト出版物のタイトル | 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 |
編集者 | Binhai Zhu, Gonzalo Navarro, David Sankoff |
出版者 | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
ページ | 241-2410 |
ページ数 | 2170 |
ISBN(電子版) | 9783959770743 |
DOI | |
出版物ステータス | 出版済み - 5 1 2018 |
イベント | 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 - Qingdao, 中国 継続期間: 7 2 2018 → 7 4 2018 |
出版物シリーズ
名前 | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
巻 | 105 |
ISSN(印刷物) | 1868-8969 |
その他
その他 | 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 |
---|---|
国 | 中国 |
市 | Qingdao |
期間 | 7/2/18 → 7/4/18 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Software
これを引用
Lyndon factorization of grammar compressed texts revisited. / Furuya, Isamu; Nakashima, Yuto; I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.
29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 版 / Binhai Zhu; Gonzalo Navarro; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. p. 241-2410 (Leibniz International Proceedings in Informatics, LIPIcs; 巻 105).研究成果: 著書/レポートタイプへの貢献 › 会議での発言
}
TY - GEN
T1 - Lyndon factorization of grammar compressed texts revisited
AU - Furuya, Isamu
AU - Nakashima, Yuto
AU - I, Tomohiro
AU - Inenaga, Shunsuke
AU - Bannai, Hideo
AU - Takeda, Masayuki
PY - 2018/5/1
Y1 - 2018/5/1
N2 - We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.
AB - We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.
UR - http://www.scopus.com/inward/record.url?scp=85048271134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048271134&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.CPM.2018.24
DO - 10.4230/LIPIcs.CPM.2018.24
M3 - Conference contribution
AN - SCOPUS:85048271134
T3 - Leibniz International Proceedings in Informatics, LIPIcs
SP - 241
EP - 2410
BT - 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
A2 - Zhu, Binhai
A2 - Navarro, Gonzalo
A2 - Sankoff, David
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ER -