Lyndon factorization of grammar compressed texts revisited

研究成果: 著書/レポートタイプへの貢献会議での発言

抄録

We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.

元の言語英語
ホスト出版物のタイトル29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
編集者Binhai Zhu, Gonzalo Navarro, David Sankoff
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ページ241-2410
ページ数2170
ISBN(電子版)9783959770743
DOI
出版物ステータス出版済み - 5 1 2018
イベント29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 - Qingdao, 中国
継続期間: 7 2 20187 4 2018

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
105
ISSN(印刷物)1868-8969

その他

その他29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
中国
Qingdao
期間7/2/187/4/18

Fingerprint

Factorization
Data structures
Processing

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Furuya, I., Nakashima, Y., I, T., Inenaga, S., Bannai, H., & Takeda, M. (2018). Lyndon factorization of grammar compressed texts revisited. : B. Zhu, G. Navarro, & D. Sankoff (版), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 (pp. 241-2410). (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 105). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2018.24

Lyndon factorization of grammar compressed texts revisited. / Furuya, Isamu; Nakashima, Yuto; I, Tomohiro; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 版 / Binhai Zhu; Gonzalo Navarro; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. p. 241-2410 (Leibniz International Proceedings in Informatics, LIPIcs; 巻 105).

研究成果: 著書/レポートタイプへの貢献会議での発言

Furuya, I, Nakashima, Y, I, T, Inenaga, S, Bannai, H & Takeda, M 2018, Lyndon factorization of grammar compressed texts revisited. : B Zhu, G Navarro & D Sankoff (版), 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Leibniz International Proceedings in Informatics, LIPIcs, 巻. 105, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 241-2410, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018, Qingdao, 中国, 7/2/18. https://doi.org/10.4230/LIPIcs.CPM.2018.24
Furuya I, Nakashima Y, I T, Inenaga S, Bannai H, Takeda M. Lyndon factorization of grammar compressed texts revisited. : Zhu B, Navarro G, Sankoff D, 編集者, 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2018. p. 241-2410. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.CPM.2018.24
Furuya, Isamu ; Nakashima, Yuto ; I, Tomohiro ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Lyndon factorization of grammar compressed texts revisited. 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018. 編集者 / Binhai Zhu ; Gonzalo Navarro ; David Sankoff. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018. pp. 241-2410 (Leibniz International Proceedings in Informatics, LIPIcs).
@inproceedings{4fe00b2b0d784f278b8b99a355907173,
title = "Lyndon factorization of grammar compressed texts revisited",
abstract = "We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.",
author = "Isamu Furuya and Yuto Nakashima and Tomohiro I and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2018",
month = "5",
day = "1",
doi = "10.4230/LIPIcs.CPM.2018.24",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
pages = "241--2410",
editor = "Binhai Zhu and Gonzalo Navarro and David Sankoff",
booktitle = "29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018",

}

TY - GEN

T1 - Lyndon factorization of grammar compressed texts revisited

AU - Furuya, Isamu

AU - Nakashima, Yuto

AU - I, Tomohiro

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2018/5/1

Y1 - 2018/5/1

N2 - We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.

AB - We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P(n,N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.

UR - http://www.scopus.com/inward/record.url?scp=85048271134&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048271134&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.CPM.2018.24

DO - 10.4230/LIPIcs.CPM.2018.24

M3 - Conference contribution

AN - SCOPUS:85048271134

T3 - Leibniz International Proceedings in Informatics, LIPIcs

SP - 241

EP - 2410

BT - 29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018

A2 - Zhu, Binhai

A2 - Navarro, Gonzalo

A2 - Sankoff, David

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -