Many-to-many stable matchings with ties in trees

Keita Nakamura, Naoyuki Kamiyama

研究成果: ジャーナルへの寄稿学術誌査読

抄録

In the stable matching problem introduced by Gale and Shapley, it is known that in the case where the preference lists may involve ties, a stable matching always exists, but the sizes of stable matchings may be different. In this paper, we consider the problem of finding a maximum-size stable matching in a many-to-many matching market with ties. It is known that this problem is NP-hard even if the capacity of every agent is one. In this paper, we prove that this problem in trees can be solved in polynomial time by extending the algorithm proposed by Tayu and Ueno for the one-to-one setting.

本文言語英語
ページ(範囲)225-240
ページ数16
ジャーナルJournal of the Operations Research Society of Japan
59
3
DOI
出版ステータス出版済み - 2016

!!!All Science Journal Classification (ASJC) codes

  • 決定科学(全般)
  • 経営科学およびオペレーションズ リサーチ

フィンガープリント

「Many-to-many stable matchings with ties in trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル