Many-to-many stable matchings with ties, master preference lists, and matroid constraints

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

3 被引用数 (Scopus)

抄録

In this paper, we consider a matroid generalization of the hospitals/residents problem with ties. Especially, we focus on the situation in which we are given a master list and the preference list of each hospital over residents is derived from this master list. In this setting, Kamiyama proved that if hospitals have matroid constraints and each resident is assigned to at most one hospital, then we can solve the super-stable matching problem and the strongly stable matching problem in polynomial time. In this paper, we generalize these results to the many-to-many setting. More specifically, we consider the setting where each resident can be assigned to multiple hospitals, and the set of hospitals that this resident is assigned to must form an independent set of a matroid. In this paper, we prove that the super-stable matching problem and the strongly stable matching problem in this setting can be solved in polynomial time.

本文言語英語
ホスト出版物のタイトル18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
出版社International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
ページ583-591
ページ数9
ISBN(電子版)9781510892002
出版ステータス出版済み - 2019
イベント18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019 - Montreal, カナダ
継続期間: 5 13 20195 17 2019

出版物シリーズ

名前Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
1
ISSN(印刷版)1548-8403
ISSN(電子版)1558-2914

会議

会議18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
国/地域カナダ
CityMontreal
Period5/13/195/17/19

All Science Journal Classification (ASJC) codes

  • 人工知能
  • ソフトウェア
  • 制御およびシステム工学

フィンガープリント

「Many-to-many stable matchings with ties, master preference lists, and matroid constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル