抄録
In this study, the authors show an empirical guideline for designing hole transport materials (HTMs) that suppress rises in driving voltage even with a few hundred nanometer thick film in the organic light emitting diodes (OLEDs). In a device structure of indium tin oxide (110 nm) /hole transport layer (HTL) (X nm) 4, 4′ -N, N′ -bis [N -(1-naphthyl)- N -phenyl-amino]biphenyl (10 nm) /tris-(8-hydroxyquinoline)aluminum (Al q3) (50 nm) MgAg (100 nm) Ag (10 nm), the authors compared electroluminescence characteristics of the OLEDs having a thin-film HTL (X=50 nm) and a thick-film HTL (X=300 nm) using 13 kinds of HTMs. They observed a closed correlation between suppression of the driving voltage and the HTMs' thermal characteristics. Highly thermally stable HTMs resulted in a small increase in the driving voltage.
本文言語 | 英語 |
---|---|
論文番号 | 183503 |
ジャーナル | Applied Physics Letters |
巻 | 90 |
号 | 18 |
DOI | |
出版ステータス | 出版済み - 2007 |
!!!All Science Journal Classification (ASJC) codes
- 物理学および天文学(その他)