Mathematical programming formulations for neural combinatorial optimization algorithms

Kiichi Urahama

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

Analog neural network algorithms for solving combinatorial optimization problems are analyzed on the basis of the saddle point theorem in mathematical programming theories. A generalized Hopfield network scheme is shown to be a gradient system for searching a saddle point of Lagrange functions of continuous relaxation problems of 0-1 integer programs. This derivation of neural network algorithms provides us an interpretation of deterministic annealing procedures on the basis of mathematical programming theories. Additional interpretation of the generalized Hopfield network scheme is also given as a gradient projection method in a Riemannian space. The Lagrange function is shown to be a Liapunov function for this gradient algorithm whose convergence is then guaranteed from Liapunov stability theorems.

本文言語英語
ページ(範囲)353-364
ページ数12
ジャーナルJournal of artificial neural networks
2
4
出版ステータス出版済み - 12 1 1995

All Science Journal Classification (ASJC) codes

  • 工学(全般)

フィンガープリント

「Mathematical programming formulations for neural combinatorial optimization algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル