Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach

研究成果: ジャーナルへの寄稿学術誌査読

3 被引用数 (Scopus)

抄録

The application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to quantitative analyses is restricted by the variability of MS intensity of the analytes in nonreproducible matrix crystals of tissues. To overcome this challenge, a fluorescence-assisted spraying method was developed for a constant matrix amount employing an MS-detectable fluorescent reagent, rhodamine 6G (R6G), which was sprayed with the matrix. To form a homogeneous matrix crystal on the tissue section, a matrix solution, 1,5-diaminonaphthalene (10 mg/mL), containing R6G (40 μg/mL) and O-dinitrobenzene (O-DNB, 10 mg/mL) was sprayed until the desired constant fluorescence intensity was achieved. Compared with that obtained via conventional cycle-number-fixed spraying [relative standard deviation (RSD) = 31.1%], the reproducibility of the relative MS intensity of the analyte [ferulic acid (FA), RSD = 3.1%] to R6G was significantly improved by the fluorescence-assisted matrix spraying. This result indicated that R6G could be employed as an index of the matrix amount and an MS normalizing standard. The proposed matrix spraying successfully quantified nifedipine (0.5–40 pmol/mm2 in the positive mode, R2 = 0.965) and FA (0.5–75 pmol/mm2 in the negative mode, R2 = 0.9972) in the kidney section of a rat. Employing the quantitative MALDI-MS imaging assay, FA, which accumulated in the kidney of the rat after 50 mg/kg was orally administered, was visually determined to be 3.5, 3.0, and 0.2 μmol/g tissue at 15, 30, and 60 min, respectively.

本文言語英語
ページ(範囲)1990-1998
ページ数9
ジャーナルAnalytical Chemistry
94
4
DOI
出版ステータス出版済み - 2月 1 2022

!!!All Science Journal Classification (ASJC) codes

  • 分析化学

フィンガープリント

「Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル