Maximum mass of a barotropic spherical star

Atsuhito Fujisawa, Hiromi Saida, Chul Moon Yoo, Yasusada Nambu

研究成果: ジャーナルへの寄稿学術誌査読

10 被引用数 (Scopus)


The ratio of total mass m∗ to the surface radius r of a spherical perfect fluid ball has an upper bound, Gm (c2r) ≤B. Buchdahl (1959 Phys. Rev. 116 1027) obtained the value BBuch = 4 9 under the assumptions that the object has a nonincreasing mass density in the outward direction and a barotropic equation of state. Barraco and Hamity (2002 Phys. Rev. D 65 124028) decreased Buchdahls bound to a lower value, BBaHa = 3/8 (<4/9), by adding the dominant energy condition to Buchdahls assumptions. In this paper, we further decrease Barraco-Hamitys bound to Bnew ≃ 0.3636403 (<3/8) by adding the subluminal (slower than light) condition of sound speed. In our analysis we numerically solve the Tolman-Oppenheimer-Volkoff equations, and the mass-to-radius ratio is maximized by variation of mass, radius and pressure inside the fluid ball as functions of mass density.

ジャーナルClassical and Quantum Gravity
出版ステータス出版済み - 10月 15 2015

!!!All Science Journal Classification (ASJC) codes

  • 物理学および天文学(その他)


「Maximum mass of a barotropic spherical star」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。