Measurement of a Heated Surface Temperature Using a High-Speed Infrared Camera During Critical Heat Flux Enhancement by a Honeycomb Porous Plate in a Saturated Pool Boiling of a Nanofluid

Shoji Mori, Suazlan Mt Aznam, Ryuta Yanagisawa, Fumihisa Yokomatsu, Kunito Okuyama

研究成果: Contribution to journalArticle査読

4 被引用数 (Scopus)

抄録

This article presents an experimental study to investigate the critical heat flux (CHF) enhancement mechanism using honeycomb porous plate (HPP). The CHF enhanced significantly with combination of the HPP and nanofluid, up to 3.2 MW/m2 at maximum compared to a plain surface, 1.0 MW/m2. The mechanism by which the CHF is improved in this system was elucidated by measuring the temperature of the heated surface using an indium tin oxide (ITO) heater and a high-speed infrared camera. The pool boiling experiment of water and nanofluid is performed under saturated temperature and atmospheric pressure conditions. The CHF values obtained using ITO heater is in good agreement with a conventional CHF pool boiling experiment with HPP attachment. High-speed infrared camera is analyzed to understand the behavior of local temperature at various locations over time. It is observed at the burnout condition, the highest average temperature is occurred at the intersection of HPP wall. Moreover, the reversible dry spots were initiated in the cell part of the HPP, and small dry spots coalesced into a growth of large irreversible dryout that leads to burnout. Further CHF enhancement could be realized if the initiation of the dryout region could be suppressed.

本文言語英語
ページ(範囲)1397-1413
ページ数17
ジャーナルHeat Transfer Engineering
41
15-16
DOI
出版ステータス出版済み - 9 7 2020

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

フィンガープリント 「Measurement of a Heated Surface Temperature Using a High-Speed Infrared Camera During Critical Heat Flux Enhancement by a Honeycomb Porous Plate in a Saturated Pool Boiling of a Nanofluid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル