Mechanical induction of interleukin-11 regulates osteoblastic/cementoblastic differentiation of human periodontal ligament stem/progenitor cells

S. Monnouchi, Hidefumi Maeda, Asuka Yuda, Sayuri Hamano, Naohisa Wada, Atsushi Tomokiyo, K. Koori, Hideki Sugii, S. Serita, A. Akamine

研究成果: ジャーナルへの寄稿記事

16 引用 (Scopus)

抜粋

Background and Objective: The periodontal ligament (PDL) is continually exposed to mechanical loading caused by mastication or occlusion. Physiological loading is thus considered a key regulator of PDL tissue homeostasis; however, it remains unclear how this occurs. We recently reported that an appropriate magnitude of mechanical stretch can maintain PDL tissue homeostasis via the renin-angiotensin system. In the present study, we investigated the expression of interleukin-11 (IL-11) in human primary PDL cells (HPDLCs) exposed to stretch loading, the contribution of angiotensin II (Ang II) to this event and the effects of IL-11 on osteoblastic/cementoblastic differentiation of human PDL progenitor cells (cell line 1-17). Material and Methods: Human primary PDL cells, derived from human tissues, with or without antagonists against the Ang II receptors AT1 or AT2, were subjected to cyclical stretch loading with 8% elongation for 1 h. Expression of IL-11 was measured by ELISA in these cultures and by immunohistochemistry in the sectioned maxillae of rats. The osteoblastic/cementoblastic potential of cell line 1-17 was determined using cell proliferation, gene expression and Alizarin Red staining. Results: Positive staining for IL-11 was observed in the PDL of rat maxillae and in cultures of HPDLCs. In HPDLCs exposed to stretch, expression of the IL11 gene and the IL-11 protein were up-regulated, concomitant with an increase in Ang II and via AT2. Recombinant human IL-11 (rhIL-11) stimulated an increase in expression of mRNA for the cementoblast-specific marker, CP-23, and for the osteoblastic markers, osteopontin and bone sialoprotein, and promoted proliferation in cell line 1-17. In addition, rhIL-11 also increased the degree of mineralized nodule formation in cell line 1-17 cultures treated with CaCl2. Conclusion: Mechanical loading appears to control proliferation and osteoblastic/cementoblastic differentiation of human PDL stem/progenitor cells through the regulation of Ang II and AT2 by IL-11.

元の言語英語
ページ(範囲)231-239
ページ数9
ジャーナルJournal of Periodontal Research
50
発行部数2
DOI
出版物ステータス出版済み - 4 1 2015

All Science Journal Classification (ASJC) codes

  • Periodontics

フィンガープリント Mechanical induction of interleukin-11 regulates osteoblastic/cementoblastic differentiation of human periodontal ligament stem/progenitor cells' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用