Mechanisms and quantitative evaluation of flow loss generation in a multi-stage transonic axial compressor

Seishiro Saito, Masato Furukawa, Kazutoyo Yamada, Keisuke Watanabe, Akinori Matsuoka, Naoyuki Niwa

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

5 被引用数 (Scopus)

抄録

Flow structure and flow loss generation in a transonic axial compressor has been numerically investigated by using a large-scale detached eddy simulation (DES). The data mining techniques, which include a vortex identification based on the critical point theory and a limiting streamline visualization with the line integral convolution (LIC) method, were applied to the DES result in order to analyze the complicated flow field in compressor. The flow loss in unsteady flow field was evaluated by entropy production rate, and the loss mechanism and the loss amount of each flow phenomenon were investigated for the first rotor and the first stator. In the first rotor, a shock-induced separation is caused by the detached shock wave and the passage shock wave. On the hub side, a hub-corner separation occurs due to the secondary flow on the hub surface, and a hub-corner separation vortex is clearly formed. The flow loss is mainly caused by the blade boundary layer and wake, and the loss due to the shock wave is very small, only about 1 percent of the total loss amount in the first rotor. However, the shock/boundary layer interaction causes an additional loss in the blade boundary layer and the wake, which amount reaches to about 30 percent of the total. In the first stator, the hub-corner separation occurs on the suction side. Although only one hub-corner separation vortex is formed in the averaged flow field, the hub-corner separation vortex is generated in multiple pieces and those pieces interfere with each other in an instantaneous flow field. The hub-corner separation generates huge loss over a wide range, however, the loss generation around the hub-corner separation vortex is not so large, and the flow loss is mainly produced in the shear layer between the mainstream region and the separation region. The main factors of loss generation are the boundary layer, wake and hub-corner separation, which account for about 80 percent of the total loss amount in the first stator.

本文言語英語
ホスト出版物のタイトルTurbomachinery
出版社American Society of Mechanical Engineers (ASME)
ISBN(電子版)9780791858554
DOI
出版ステータス出版済み - 2019
イベントASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019 - Phoenix, 米国
継続期間: 6月 17 20196月 21 2019

出版物シリーズ

名前Proceedings of the ASME Turbo Expo
2A-2019

会議

会議ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
国/地域米国
CityPhoenix
Period6/17/196/21/19

!!!All Science Journal Classification (ASJC) codes

  • 工学(全般)

フィンガープリント

「Mechanisms and quantitative evaluation of flow loss generation in a multi-stage transonic axial compressor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル