MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells

Keisuke Gotanda, Takeshi Hirota, Nozomi Matsumoto, Ichiro Ieiri

研究成果: ジャーナルへの寄稿記事

36 引用 (Scopus)

抄録

Background: Thymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy. High TYMS expression levels in tumors are generally associated with resistance to 5-fluorouracil (5-FU). The cause of the variability in TYMS expression is still not fully understood, however, only a small proportion of the TYMS expression can be explained by TYMS genetic polymorphisms. The purpose of this study is to identify novel microRNAs (miRNAs) which regulate the expression of TYMS and to determine whether miRNAs binding to the 3′-untranslated region (UTR) of TYMS mRNA affect the proliferation of HeLa cells treated with 5-FU.Methods: An in silico search was performed to find potential binding sites of miRNAs in TYMS mRNA. The efficacy of predicted miRNAs at the 3′-UTR of TYMS mRNA was evaluated using a dual-luciferase reporter assay. TYMS mRNA and protein expression in HeLa cells was quantified with real-time RT-PCR and Western blotting, respectively. The effects of miR-433 on cell proliferative activity were determined by WST-8 assay.Results: The overexpression of miR-433 was associated with significantly decreased reporter activity in the plasmid containing the 3′-UTR of TYMS mRNA (P < 0.01). The levels of TYMS mRNA and protein in HeLa cells were significantly decreased by the overexpression of miR-433 (P < 0.05). Furthermore, miR-433 increased inhibition of cell proliferation in HeLa cells treated with 5-FU at over 2.0 μM.Conclusion: The results indicate that miR-433 post-transcriptionally regulates the expression of TYMS mRNA and protein, and increases sensitivity to 5-FU in HeLa cells. This is the first report showing that a miRNA regulating TYMS expression has a significant impact on sensitivity to 5-FU treatment.

元の言語英語
記事番号369
ジャーナルBMC Cancer
13
DOI
出版物ステータス出版済み - 8 2 2013

Fingerprint

Thymidylate Synthase
MicroRNAs
HeLa Cells
Fluorouracil
Messenger RNA
3' Untranslated Regions
Proteins
Genetic Polymorphisms
Luciferases
Folic Acid
Computer Simulation

All Science Journal Classification (ASJC) codes

  • Genetics
  • Oncology
  • Cancer Research

これを引用

MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. / Gotanda, Keisuke; Hirota, Takeshi; Matsumoto, Nozomi; Ieiri, Ichiro.

:: BMC Cancer, 巻 13, 369, 02.08.2013.

研究成果: ジャーナルへの寄稿記事

@article{39f58d9e1134450ea292aa607aa68d4f,
title = "MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells",
abstract = "Background: Thymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy. High TYMS expression levels in tumors are generally associated with resistance to 5-fluorouracil (5-FU). The cause of the variability in TYMS expression is still not fully understood, however, only a small proportion of the TYMS expression can be explained by TYMS genetic polymorphisms. The purpose of this study is to identify novel microRNAs (miRNAs) which regulate the expression of TYMS and to determine whether miRNAs binding to the 3′-untranslated region (UTR) of TYMS mRNA affect the proliferation of HeLa cells treated with 5-FU.Methods: An in silico search was performed to find potential binding sites of miRNAs in TYMS mRNA. The efficacy of predicted miRNAs at the 3′-UTR of TYMS mRNA was evaluated using a dual-luciferase reporter assay. TYMS mRNA and protein expression in HeLa cells was quantified with real-time RT-PCR and Western blotting, respectively. The effects of miR-433 on cell proliferative activity were determined by WST-8 assay.Results: The overexpression of miR-433 was associated with significantly decreased reporter activity in the plasmid containing the 3′-UTR of TYMS mRNA (P < 0.01). The levels of TYMS mRNA and protein in HeLa cells were significantly decreased by the overexpression of miR-433 (P < 0.05). Furthermore, miR-433 increased inhibition of cell proliferation in HeLa cells treated with 5-FU at over 2.0 μM.Conclusion: The results indicate that miR-433 post-transcriptionally regulates the expression of TYMS mRNA and protein, and increases sensitivity to 5-FU in HeLa cells. This is the first report showing that a miRNA regulating TYMS expression has a significant impact on sensitivity to 5-FU treatment.",
author = "Keisuke Gotanda and Takeshi Hirota and Nozomi Matsumoto and Ichiro Ieiri",
year = "2013",
month = "8",
day = "2",
doi = "10.1186/1471-2407-13-369",
language = "English",
volume = "13",
journal = "BMC Cancer",
issn = "1471-2407",
publisher = "BioMed Central",

}

TY - JOUR

T1 - MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells

AU - Gotanda, Keisuke

AU - Hirota, Takeshi

AU - Matsumoto, Nozomi

AU - Ieiri, Ichiro

PY - 2013/8/2

Y1 - 2013/8/2

N2 - Background: Thymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy. High TYMS expression levels in tumors are generally associated with resistance to 5-fluorouracil (5-FU). The cause of the variability in TYMS expression is still not fully understood, however, only a small proportion of the TYMS expression can be explained by TYMS genetic polymorphisms. The purpose of this study is to identify novel microRNAs (miRNAs) which regulate the expression of TYMS and to determine whether miRNAs binding to the 3′-untranslated region (UTR) of TYMS mRNA affect the proliferation of HeLa cells treated with 5-FU.Methods: An in silico search was performed to find potential binding sites of miRNAs in TYMS mRNA. The efficacy of predicted miRNAs at the 3′-UTR of TYMS mRNA was evaluated using a dual-luciferase reporter assay. TYMS mRNA and protein expression in HeLa cells was quantified with real-time RT-PCR and Western blotting, respectively. The effects of miR-433 on cell proliferative activity were determined by WST-8 assay.Results: The overexpression of miR-433 was associated with significantly decreased reporter activity in the plasmid containing the 3′-UTR of TYMS mRNA (P < 0.01). The levels of TYMS mRNA and protein in HeLa cells were significantly decreased by the overexpression of miR-433 (P < 0.05). Furthermore, miR-433 increased inhibition of cell proliferation in HeLa cells treated with 5-FU at over 2.0 μM.Conclusion: The results indicate that miR-433 post-transcriptionally regulates the expression of TYMS mRNA and protein, and increases sensitivity to 5-FU in HeLa cells. This is the first report showing that a miRNA regulating TYMS expression has a significant impact on sensitivity to 5-FU treatment.

AB - Background: Thymidylate synthase (TYMS) is an important folate-dependent enzyme in DNA synthesis and an important target for cancer chemotherapy. High TYMS expression levels in tumors are generally associated with resistance to 5-fluorouracil (5-FU). The cause of the variability in TYMS expression is still not fully understood, however, only a small proportion of the TYMS expression can be explained by TYMS genetic polymorphisms. The purpose of this study is to identify novel microRNAs (miRNAs) which regulate the expression of TYMS and to determine whether miRNAs binding to the 3′-untranslated region (UTR) of TYMS mRNA affect the proliferation of HeLa cells treated with 5-FU.Methods: An in silico search was performed to find potential binding sites of miRNAs in TYMS mRNA. The efficacy of predicted miRNAs at the 3′-UTR of TYMS mRNA was evaluated using a dual-luciferase reporter assay. TYMS mRNA and protein expression in HeLa cells was quantified with real-time RT-PCR and Western blotting, respectively. The effects of miR-433 on cell proliferative activity were determined by WST-8 assay.Results: The overexpression of miR-433 was associated with significantly decreased reporter activity in the plasmid containing the 3′-UTR of TYMS mRNA (P < 0.01). The levels of TYMS mRNA and protein in HeLa cells were significantly decreased by the overexpression of miR-433 (P < 0.05). Furthermore, miR-433 increased inhibition of cell proliferation in HeLa cells treated with 5-FU at over 2.0 μM.Conclusion: The results indicate that miR-433 post-transcriptionally regulates the expression of TYMS mRNA and protein, and increases sensitivity to 5-FU in HeLa cells. This is the first report showing that a miRNA regulating TYMS expression has a significant impact on sensitivity to 5-FU treatment.

UR - http://www.scopus.com/inward/record.url?scp=84880947912&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880947912&partnerID=8YFLogxK

U2 - 10.1186/1471-2407-13-369

DO - 10.1186/1471-2407-13-369

M3 - Article

C2 - 23915286

AN - SCOPUS:84880947912

VL - 13

JO - BMC Cancer

JF - BMC Cancer

SN - 1471-2407

M1 - 369

ER -