Microstructure and mechanical properties of a harmonic structure designed fe-0.3 mass%c steel

Ryohei Iritani, Kenta Hori, Bhupendra Sharma, Mie Kawabata, Guy Dirras, Tadashi Furuhara, Kei Ameyama

研究成果: Contribution to journalArticle査読

抄録

The microstructure and mechanical properties of harmonic structure designed Fe-0.3mass% carbon steel was investigated. The compacts of Fe-0.3 mass% carbon steel with conventional Homogeneous structure (Homo), and Harmonic Structure (HS) consisting of fine grains (Shell) and coarse grains (Core) were fabricated by a powder metallurgy method. The mechanical milling (MM) leads to the formation of nano ferrite grains at the deformed surface of MM powder particles. After sintering, the Homo and HS compacts had ferrite (α) and perlite (P) phases. The Shell had finer α + P phases than Core, and the fraction of the P in the Shell was larger than that in the Core. It was considered that the carbon segregation occurs at the deformed surface of MM powder particles due to nano ferrite formation. As a result, the number of austenite nuclei increases in Shell. Therefore, the HS compact has both the grain size gradient as well as a phase constituent gradient. As-sintered HS indicated superior mechanical properties compared to the Homo counterparts. The mechanical properties were improved by further heat treatments. Those as-sintered and heat-treated HS compacts indicated a large increase of ductility and tensile toughness. Such outstanding and unique mechanical properties of the HS were attributed to the enhancement of the local elongation after necking. These superior mechanical properties are considered to be due to the micro and macro synergy effects.

本文言語英語
ページ(範囲)735-744
ページ数10
ジャーナルTetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
106
10
DOI
出版ステータス出版済み - 10 2020
外部発表はい

All Science Journal Classification (ASJC) codes

  • 凝縮系物理学
  • 物理化学および理論化学
  • 金属および合金
  • 材料化学

フィンガープリント

「Microstructure and mechanical properties of a harmonic structure designed fe-0.3 mass%c steel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル