Minimum average cost clustering

Kiyohito Nagano, Yoshinobu Kawahara, Satoru Iwata

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

25 被引用数 (Scopus)

抄録

A number of objective functions in clustering problems can be described with submodular functions. In this paper, we introduce the minimum average cost criterion, and show that the theory of intersecting submodular functions can be used for clustering with submodular objective functions. The proposed algorithm does not require the number of clusters in advance, and it will be determined by the property of a given set of data points. The minimum average cost clustering problem is parameterized with a real variable, and surprisingly, we show that all information about optimal clusterings for all parameters can be computed in polynomial time in total. Additionally, we evaluate the performance of the proposed algorithm through computational experiments.

本文言語英語
ホスト出版物のタイトルAdvances in Neural Information Processing Systems 23
ホスト出版物のサブタイトル24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
出版ステータス出版済み - 2010
外部発表はい
イベント24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 - Vancouver, BC, カナダ
継続期間: 12 6 201012 9 2010

出版物シリーズ

名前Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

会議

会議24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Countryカナダ
CityVancouver, BC
Period12/6/1012/9/10

All Science Journal Classification (ASJC) codes

  • Information Systems

フィンガープリント 「Minimum average cost clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル