TY - JOUR
T1 - Mitochondria-derived reactive oxygen species mediate sympathoexcitation induced by angiotensin II in the rostral ventrolateral medulla
AU - Nozoe, Masatsugu
AU - Hirooka, Yoshitaka
AU - Koga, Yasuaki
AU - Araki, Shuichiro
AU - Konno, Satomi
AU - Kishi, Takuya
AU - Ide, Tomomi
AU - Sunagawa, Kenji
PY - 2008/11
Y1 - 2008/11
N2 - OBJECTIVES: Reactive oxygen species (ROS) in the central nervous system are thought to contribute to sympathoexcitation in cardiovascular diseases such as hypertension and heart failure. Nicotinamide adenine dinucleotide phosphate oxidase is a major source of ROS in the central nervous system, which acts as a key mediator (mediators) of angiotensin II (AngII). It is not clear, however, whether mitochondria-derived ROS in the central nervous system also participate in sympathoexcitation. METHODS: In an in-vivo study, we investigated whether the AngII-elicited pressor response in the rostral ventrolateral medulla, which controls sympathetic nerve activity, is attenuated by adenovirus-mediated gene transfer of a mitochondria-derived antioxidant (Mn-SOD). In an in-vitro study, using differentiated PC-12 cells with characteristics similar to those of sympathetic neurons, we examined whether AngII increases mitochondrial ROS production. RESULTS: Overexpression of Mn-SOD attenuated the AngII-induced pressor response and also suppressed AngII-induced ROS production, as evaluated by microdialysis in the rostral ventrolateral medulla. Using reduced MitoTracker red, we showed that AngII increased mitochondrial ROS production in differentiated PC-12 cells in vitro. Overexpression of Mn-SOD and rotenone, a mitochondrial respiratory complex I inhibitor, suppressed AngII-induced ROS production. Depletion of extracellular Ca with ethylene glycol bis-N,N,N′,N′-tetraacetate (EGTA) and administration of p-trifluoromethoxycarbonylcyanide phenylhydrazone, which prevents further Ca uptake into the mitochondria, blocked AngII-elicited mitochondrial ROS production. CONCLUSION: These results indicate that AngII increases the intracellular Ca concentration and that the increase in mitochondrial Ca uptake leads to mitochondrial ROS production.
AB - OBJECTIVES: Reactive oxygen species (ROS) in the central nervous system are thought to contribute to sympathoexcitation in cardiovascular diseases such as hypertension and heart failure. Nicotinamide adenine dinucleotide phosphate oxidase is a major source of ROS in the central nervous system, which acts as a key mediator (mediators) of angiotensin II (AngII). It is not clear, however, whether mitochondria-derived ROS in the central nervous system also participate in sympathoexcitation. METHODS: In an in-vivo study, we investigated whether the AngII-elicited pressor response in the rostral ventrolateral medulla, which controls sympathetic nerve activity, is attenuated by adenovirus-mediated gene transfer of a mitochondria-derived antioxidant (Mn-SOD). In an in-vitro study, using differentiated PC-12 cells with characteristics similar to those of sympathetic neurons, we examined whether AngII increases mitochondrial ROS production. RESULTS: Overexpression of Mn-SOD attenuated the AngII-induced pressor response and also suppressed AngII-induced ROS production, as evaluated by microdialysis in the rostral ventrolateral medulla. Using reduced MitoTracker red, we showed that AngII increased mitochondrial ROS production in differentiated PC-12 cells in vitro. Overexpression of Mn-SOD and rotenone, a mitochondrial respiratory complex I inhibitor, suppressed AngII-induced ROS production. Depletion of extracellular Ca with ethylene glycol bis-N,N,N′,N′-tetraacetate (EGTA) and administration of p-trifluoromethoxycarbonylcyanide phenylhydrazone, which prevents further Ca uptake into the mitochondria, blocked AngII-elicited mitochondrial ROS production. CONCLUSION: These results indicate that AngII increases the intracellular Ca concentration and that the increase in mitochondrial Ca uptake leads to mitochondrial ROS production.
UR - http://www.scopus.com/inward/record.url?scp=56049119631&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=56049119631&partnerID=8YFLogxK
U2 - 10.1097/HJH.0b013e32830dd5d3
DO - 10.1097/HJH.0b013e32830dd5d3
M3 - Article
C2 - 18854758
AN - SCOPUS:56049119631
SN - 0263-6352
VL - 26
SP - 2176
EP - 2184
JO - Journal of Hypertension
JF - Journal of Hypertension
IS - 11
ER -