抄録
We consider generalized definitions of mixing and exactness for random dynamical systems in terms of Markov operator cocycles. We first give six fundamental definitions of mixing for Markov operator cocycles in view of observations of the randomness in environments, and reduce them into two different groups. Secondly, we give the definition of exactness for Markov operator cocycles and show that Lin's criterion for exactness can be naturally extended to the case of Markov operator cocycles. Finally, in the class of asymptotically periodic Markov operator cocycles, we show the Lasota-Mackey type equivalence between mixing, exactness and asymptotic stability.
本文言語 | 英語 |
---|---|
ページ(範囲) | 66-83 |
ページ数 | 18 |
ジャーナル | Nonlinearity |
巻 | 35 |
号 | 1 |
DOI | |
出版ステータス | 出版済み - 1月 2022 |
!!!All Science Journal Classification (ASJC) codes
- 統計物理学および非線形物理学
- 数理物理学
- 物理学および天文学(全般)
- 応用数学