Modality conversion of handwritten patterns by cross variational autoencoders

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

3 被引用数 (Scopus)

抄録

This research attempts to construct a network that can convert online and offline handwritten characters to each other. The proposed network consists of two Variational Auto-Encoders (VAEs) with a shared latent space. The VAEs are trained to generate online and offline handwritten Latin characters simultaneously. In this way, we create a cross-modal VAE (Cross-VAE). During training, the proposed Cross-VAE is trained to minimize the reconstruction loss of the two modalities, the distribution loss of the two VAEs, and a novel third loss called the space sharing loss. This third, space sharing loss is used to encourage the modalities to share the same latent space by calculating the distance between the latent variables. Through the proposed method mutual conversion of online and offline handwritten characters is possible. In this paper, we demonstrate the performance of the Cross-VAE through qualitative and quantitative analysis.

本文言語英語
ホスト出版物のタイトルProceedings - 15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
出版社IEEE Computer Society
ページ407-412
ページ数6
ISBN(電子版)9781728128610
DOI
出版ステータス出版済み - 9 2019
イベント15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019 - Sydney, オーストラリア
継続期間: 9 20 20199 25 2019

出版物シリーズ

名前Proceedings of the International Conference on Document Analysis and Recognition, ICDAR
ISSN(印刷版)1520-5363

会議

会議15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
国/地域オーストラリア
CitySydney
Period9/20/199/25/19

All Science Journal Classification (ASJC) codes

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Modality conversion of handwritten patterns by cross variational autoencoders」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル