Model for thickness dependence of mobility and concentration in highly conductive ZnO

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, I. Surhariadi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

2 被引用数 (Scopus)

抄録

The dependences of the 294-K and 10-K mobility μ and volume carrier concentration n on thickness (d = 25 -147 nm) were examined in Al-doped ZnO (AZO) layers grown in Ar ambient at 200 °C on quartz-glass substrates. Two AZO layers were grown at each thickness, one with and one without a 20-nm-thick ZnON buffer layer grown at 300 °C in Ar/N2 ambient. Plots of the 10-K sheet concentration ns vs d for buffered (B) and unbuffered (UB) samples give straight lines of similar slope, n = 8.36 x 1020 and 8.32 x 1020 cm-3, but different x-axis intercepts, δd = -4 and +13 nm, respectively. Thus, the electrical thicknesses are d -δd = d + 4 and d -13 nm, respectively. Plots of ns vs d at 294 K produced substantially the same results. Plots of μ vs d can be well fitted with the equation μ(d) = μ(infinity symbol)/[1 + d*/(d-δd)], where d* is the thickness for which μ(infinity symbol) is reduced by a factor 2. For the B and UB samples, d* = 7 and 23 nm, respectively, showing the efficacy of the ZnON buffer. Finally, from n and μ(infinity symbol) we can use degenerate electron scattering theory to calculate bulk donor and acceptor concentrations of 1.23 x 1021 cm-3 and 1.95 x 1020 cm -3, respectively, and Drude theory to predict a plasmonic resonance at1.34 μm. The latter is confirmed by reflectance measurements.

本文言語英語
ホスト出版物のタイトルOxide-Based Materials and Devices IV
DOI
出版ステータス出版済み - 5月 30 2013
イベントOxide-Based Materials and Devices IV - San Francisco, CA, 米国
継続期間: 2月 3 20132月 6 2013

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
8626
ISSN(印刷版)0277-786X

その他

その他Oxide-Based Materials and Devices IV
国/地域米国
CitySan Francisco, CA
Period2/3/132/6/13

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Model for thickness dependence of mobility and concentration in highly conductive ZnO」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル