Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes

研究成果: ジャーナルへの寄稿記事

抄録

Inorganic–organic nanocomposite hybrids containing zirconium dioxide (ZrO2) as inorganic cross-linker/filler and polydimethylsiloxane (PDMS) as a polymeric matrix have been synthesized using the in situ sol–gel reaction between silanol-terminated PDMS and zirconium normal butoxide (Zr(OC4H9)4). Hybrid materials were used to fabricate gas separation membranes which were characterized by scanning electron microscopy, dynamic scanning calorimetry, nanoindentation, ATR-FTIR, and XPS spectroscopies. Amorphous structure of incorporated ZrO2 fillers was verified by X-ray diffraction. Small gases (He, H2, O2, N2, and CO2) permeability experiments were carried out to study the effect of the inorganic component amount on the properties of the ZrO2@PDMS hybrids. The permeability of the developed hybrids considerably exceeded the permeability of conventional PDMS which is known as “gold standard” highly gas-permeable rubbery polymer. Depending on the ZrO2 content, fabricated hybrids demonstrated increased permeability for all gases with improvement inversely proportional to the kinetic diameter of gas molecules, that is, highest permeability increase (relatively to PDMS) was observed for H2 and lowest for N2. Such behavior suggests the formation of the size-sieving amorphous zirconia domains within PDMS which do not impede gas transport due to the nanosize of the fillers. As a result, gas separation membranes prepared using the developed materials demonstrated better separation performance for CO2/N2, H2/N2, and O2/N2 pairs compared to the conventional PDMS.
元の言語英語
ページ(範囲)1165-1174
ページ数10
ジャーナルACS Applied Polymer Materials
1
発行部数5
DOI
出版物ステータス出版済み - 5 10 2019

Fingerprint

Gas permeable membranes
Gases
Fillers
Membranes
Hybrid materials
Calorimetry
Nanoindentation
baysilon
zirconium oxide
Nanocomposites
Polymers
X ray photoelectron spectroscopy
Spectroscopy
Scanning
X ray diffraction
Scanning electron microscopy
Molecules
Kinetics

これを引用

@article{dbacce135a0a4367920cdb703f0a870b,
title = "Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes",
abstract = "Inorganic–organic nanocomposite hybrids containing zirconium dioxide (ZrO2) as inorganic cross-linker/filler and polydimethylsiloxane (PDMS) as a polymeric matrix have been synthesized using the in situ sol–gel reaction between silanol-terminated PDMS and zirconium normal butoxide (Zr(OC4H9)4). Hybrid materials were used to fabricate gas separation membranes which were characterized by scanning electron microscopy, dynamic scanning calorimetry, nanoindentation, ATR-FTIR, and XPS spectroscopies. Amorphous structure of incorporated ZrO2 fillers was verified by X-ray diffraction. Small gases (He, H2, O2, N2, and CO2) permeability experiments were carried out to study the effect of the inorganic component amount on the properties of the ZrO2@PDMS hybrids. The permeability of the developed hybrids considerably exceeded the permeability of conventional PDMS which is known as “gold standard” highly gas-permeable rubbery polymer. Depending on the ZrO2 content, fabricated hybrids demonstrated increased permeability for all gases with improvement inversely proportional to the kinetic diameter of gas molecules, that is, highest permeability increase (relatively to PDMS) was observed for H2 and lowest for N2. Such behavior suggests the formation of the size-sieving amorphous zirconia domains within PDMS which do not impede gas transport due to the nanosize of the fillers. As a result, gas separation membranes prepared using the developed materials demonstrated better separation performance for CO2/N2, H2/N2, and O2/N2 pairs compared to the conventional PDMS.",
author = "Roman Selyanchyn and Shigenori Fujikawa",
year = "2019",
month = "5",
day = "10",
doi = "10.1021/acsapm.9b00178",
language = "English",
volume = "1",
pages = "1165--1174",
journal = "ACS Applied Polymer Materials",
issn = "2637-6105",
publisher = "ACS Publications",
number = "5",

}

TY - JOUR

T1 - Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes

AU - Selyanchyn, Roman

AU - Fujikawa, Shigenori

PY - 2019/5/10

Y1 - 2019/5/10

N2 - Inorganic–organic nanocomposite hybrids containing zirconium dioxide (ZrO2) as inorganic cross-linker/filler and polydimethylsiloxane (PDMS) as a polymeric matrix have been synthesized using the in situ sol–gel reaction between silanol-terminated PDMS and zirconium normal butoxide (Zr(OC4H9)4). Hybrid materials were used to fabricate gas separation membranes which were characterized by scanning electron microscopy, dynamic scanning calorimetry, nanoindentation, ATR-FTIR, and XPS spectroscopies. Amorphous structure of incorporated ZrO2 fillers was verified by X-ray diffraction. Small gases (He, H2, O2, N2, and CO2) permeability experiments were carried out to study the effect of the inorganic component amount on the properties of the ZrO2@PDMS hybrids. The permeability of the developed hybrids considerably exceeded the permeability of conventional PDMS which is known as “gold standard” highly gas-permeable rubbery polymer. Depending on the ZrO2 content, fabricated hybrids demonstrated increased permeability for all gases with improvement inversely proportional to the kinetic diameter of gas molecules, that is, highest permeability increase (relatively to PDMS) was observed for H2 and lowest for N2. Such behavior suggests the formation of the size-sieving amorphous zirconia domains within PDMS which do not impede gas transport due to the nanosize of the fillers. As a result, gas separation membranes prepared using the developed materials demonstrated better separation performance for CO2/N2, H2/N2, and O2/N2 pairs compared to the conventional PDMS.

AB - Inorganic–organic nanocomposite hybrids containing zirconium dioxide (ZrO2) as inorganic cross-linker/filler and polydimethylsiloxane (PDMS) as a polymeric matrix have been synthesized using the in situ sol–gel reaction between silanol-terminated PDMS and zirconium normal butoxide (Zr(OC4H9)4). Hybrid materials were used to fabricate gas separation membranes which were characterized by scanning electron microscopy, dynamic scanning calorimetry, nanoindentation, ATR-FTIR, and XPS spectroscopies. Amorphous structure of incorporated ZrO2 fillers was verified by X-ray diffraction. Small gases (He, H2, O2, N2, and CO2) permeability experiments were carried out to study the effect of the inorganic component amount on the properties of the ZrO2@PDMS hybrids. The permeability of the developed hybrids considerably exceeded the permeability of conventional PDMS which is known as “gold standard” highly gas-permeable rubbery polymer. Depending on the ZrO2 content, fabricated hybrids demonstrated increased permeability for all gases with improvement inversely proportional to the kinetic diameter of gas molecules, that is, highest permeability increase (relatively to PDMS) was observed for H2 and lowest for N2. Such behavior suggests the formation of the size-sieving amorphous zirconia domains within PDMS which do not impede gas transport due to the nanosize of the fillers. As a result, gas separation membranes prepared using the developed materials demonstrated better separation performance for CO2/N2, H2/N2, and O2/N2 pairs compared to the conventional PDMS.

U2 - 10.1021/acsapm.9b00178

DO - 10.1021/acsapm.9b00178

M3 - Article

VL - 1

SP - 1165

EP - 1174

JO - ACS Applied Polymer Materials

JF - ACS Applied Polymer Materials

SN - 2637-6105

IS - 5

ER -