Moment convergence in regularized estimation under multiple and mixed-rates asymptotics

H. Masuda, Y. Shimizu

研究成果: ジャーナルへの寄稿記事

5 引用 (Scopus)

抜粋

In M-estimation under standard asymptotics, the weak convergence combined with the polynomial type large deviation estimate of the associated statistical random field Yoshida (2011) provides us with not only the asymptotic distribution of the associated M-estimator but also the convergence of its moments, the latter playing an important role in theoretical statistics. In this paper, we study the above program for statistical random fields of multiple and also possibly mixedrates type in the sense of Radchenko (2008) where the associated statistical random fields may be nondifferentiable and may fail to be locally asymptotically quadratic. Consequently, a very strong mode of convergence of a wide range of regularized M-estimators is ensured.Our results are applied to regularized estimation of an ergodic diffusion observed at high frequency.

元の言語英語
ページ(範囲)81-110
ページ数30
ジャーナルMathematical Methods of Statistics
26
発行部数2
DOI
出版物ステータス出版済み - 4 1 2017

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

フィンガープリント Moment convergence in regularized estimation under multiple and mixed-rates asymptotics' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用