TY - JOUR
T1 - Monophosphanylcalix[6]arene ligands
T2 - Synthesis characterization, complexation, and their use in catalysis
AU - Obora, Yasushi
AU - Yun, Kui Liu
AU - Kubouchi, Sho
AU - Tokunaga, Makoto
AU - Tsuji, Yasushi
N1 - Copyright:
Copyright 2006 Elsevier B.V., All rights reserved.
PY - 2006/1/9
Y1 - 2006/1/9
N2 - Novel phosphanylcalix[6]arenes having mono-O-diphenylphosphanylmethyl (3) and mono-O-(4-diphenylphosphanylphenyl)methyl substituents (5) have been synthesized. The structures of these monophosphanylcalix[6]arenes were determined by NMR spectroscopy, mass spectrometry, and X-ray crystal structure analysis. The X-ray structure reveals that 3 adopts a flattened 1,2,3-alternate conformation in the crystalline state, while the NMR spectra show that 3 and 5 have a cone conformation in solution. Structure optimization and energy calculations for 3 and 5 at the B3LYP/LANL2DZ-CONFLEX5/MMFF94s level of theory show that the cone conformation is slightly more stable than the 1,2,3-alternate conformation by 0.36 kcal mol-1 for 3 and 0.96 kcal mol-1 for 5. Complexation of 3 with [PtCl2(COD)] and [Rh(COD) 2]BF4 gives cis-coordinated [PtCl2(3) 2] and [Rh(COD)(3)2]BF4, respectively. The X-ray analysis of [PtCl2(3)2] shows that 3 adopts a cone conformation upon complexation. Combination of 3 and 5 with [Rh(COD) 2]BF4 provides an active catalyst for the hydroformylation of a variety of terminal alkenes.
AB - Novel phosphanylcalix[6]arenes having mono-O-diphenylphosphanylmethyl (3) and mono-O-(4-diphenylphosphanylphenyl)methyl substituents (5) have been synthesized. The structures of these monophosphanylcalix[6]arenes were determined by NMR spectroscopy, mass spectrometry, and X-ray crystal structure analysis. The X-ray structure reveals that 3 adopts a flattened 1,2,3-alternate conformation in the crystalline state, while the NMR spectra show that 3 and 5 have a cone conformation in solution. Structure optimization and energy calculations for 3 and 5 at the B3LYP/LANL2DZ-CONFLEX5/MMFF94s level of theory show that the cone conformation is slightly more stable than the 1,2,3-alternate conformation by 0.36 kcal mol-1 for 3 and 0.96 kcal mol-1 for 5. Complexation of 3 with [PtCl2(COD)] and [Rh(COD) 2]BF4 gives cis-coordinated [PtCl2(3) 2] and [Rh(COD)(3)2]BF4, respectively. The X-ray analysis of [PtCl2(3)2] shows that 3 adopts a cone conformation upon complexation. Combination of 3 and 5 with [Rh(COD) 2]BF4 provides an active catalyst for the hydroformylation of a variety of terminal alkenes.
UR - http://www.scopus.com/inward/record.url?scp=30644472507&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=30644472507&partnerID=8YFLogxK
U2 - 10.1002/ejic.200500673
DO - 10.1002/ejic.200500673
M3 - Article
AN - SCOPUS:30644472507
SP - 222
EP - 230
JO - Berichte der deutschen chemischen Gesellschaft
JF - Berichte der deutschen chemischen Gesellschaft
SN - 0365-9496
IS - 1
ER -