MONOTONE CONVERGENCE OF THE SEQUENCE OF ITERATED WAVEFORMS IN THE WAVEFORM RELAXATION METHOD.

Kiichi Urahama

研究成果: Contribution to journalArticle査読

抄録

Zukowski's theorem on a monotone convergence of Waveform Relaxation (WR) is generalized. The sequence of iterated waveforms in the WR method is proven to converge monotonically for a system where the time derivative of variables reduces to a quasi-monotone increasing function by a linear transformation of the variables. This result is applied to a class of MOS digital circuits, and a sufficient condition on the topology of the circuit and input waveforms is derived such that the sequence of iterated waveforms in the WR method applied to the circuit converges monotonically.

本文言語英語
ページ(範囲)407-410
ページ数4
ジャーナルTransactions of the Institute of Electronics, Information and Communication Engineers, Section E (
E70
4
出版ステータス出版済み - 4 1 1987

All Science Journal Classification (ASJC) codes

  • 工学(全般)

フィンガープリント

「MONOTONE CONVERGENCE OF THE SEQUENCE OF ITERATED WAVEFORMS IN THE WAVEFORM RELAXATION METHOD.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル