Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity

    研究成果: Contribution to journalArticle査読

    23 被引用数 (Scopus)

    抄録

    Motions of pulses and vortices are numerically studied with the cubic-quintic complex Ginzburg-Landau equation without viscous terms. There exist moving pulses and vortices with any velocities, because the equation is invariant for the Galilei transformation. We study mutual collisions of counter-propagating pulses and vortices, and motions of pulses and vortices in external potentials. Moving pulses and vortices pass through a potential wall like a tunnel effect. If some viscous terms are included, the model equation is equivalent to the quintic complex Swift-Hohenberg equation. We find a supercritical bifurcation from a stationary pulse to a moving pulse.

    本文言語英語
    ページ(範囲)138-148
    ページ数11
    ジャーナルPhysica D: Nonlinear Phenomena
    210
    1-2
    DOI
    出版ステータス出版済み - 10 1 2005

    All Science Journal Classification (ASJC) codes

    • Statistical and Nonlinear Physics
    • Mathematical Physics
    • Condensed Matter Physics
    • Applied Mathematics

    フィンガープリント 「Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル