抄録
This paper deals with motions obtaining of an underwater robot arm which have multi-degree of freedom by using reinforcement learning algorithms. A natural gradient Actor-Critic algorithm which uses Eligibility Traces is applied to the robot arm. In this algorithm, motion planning problems are modeled as finite state Markov decision processes. The robot arm is developed to have 4 joints, each joint consists 1 servo motor. The experiment results show the robot arm successfully learning to swim by feasible learning steps.
本文言語 | 英語 |
---|---|
ホスト出版物のタイトル | TENCON 2010 - 2010 IEEE Region 10 Conference |
ページ | 1498-1502 |
ページ数 | 5 |
DOI | |
出版ステータス | 出版済み - 12月 1 2010 |
イベント | 2010 IEEE Region 10 Conference, TENCON 2010 - Fukuoka, 日本 継続期間: 11月 21 2010 → 11月 24 2010 |
その他
その他 | 2010 IEEE Region 10 Conference, TENCON 2010 |
---|---|
国/地域 | 日本 |
City | Fukuoka |
Period | 11/21/10 → 11/24/10 |
!!!All Science Journal Classification (ASJC) codes
- コンピュータ サイエンスの応用
- 電子工学および電気工学