Multi-branch structure of layered neural networks

T. Yamashita, K. Hirasawa, Jinglu Hu, Junichi Murata

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

10 被引用数 (Scopus)

抄録

In this paper, a multi-branch structure of neural networks is studied to make their size compact. The multi-branch structure has shown improved performance against conventional neural networks. As a result, it has been proved that the number of nodes of networks and the computational cost for training networks can be reduced. In addition, it could be said that proposed multi-branch networks are special cases of higher order neural networks, however, they obtain higher order effect easier without suffering the parameter explosion problem.

本文言語英語
ホスト出版物のタイトルICONIP 2002 - Proceedings of the 9th International Conference on Neural Information Processing
ホスト出版物のサブタイトルComputational Intelligence for the E-Age
編集者Jagath C. Rajapakse, Xin Yao, Lipo Wang, Kunihiko Fukushima, Soo-Young Lee
出版社Institute of Electrical and Electronics Engineers Inc.
ページ243-247
ページ数5
1
ISBN(電子版)9810475241, 9789810475246
DOI
出版ステータス出版済み - 1 1 2002
イベント9th International Conference on Neural Information Processing, ICONIP 2002 - Singapore, シンガポール
継続期間: 11 18 200211 22 2002

その他

その他9th International Conference on Neural Information Processing, ICONIP 2002
国/地域シンガポール
CitySingapore
Period11/18/0211/22/02

All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 信号処理

フィンガープリント

「Multi-branch structure of layered neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル