TY - JOUR
T1 - Multilayer-stacked paper-structured catalysts for microflow Suzuki–Miyaura cross-coupling reaction
AU - Ishihara, Yuki
AU - Kanomata, Kyohei
AU - Homma, Taichi
AU - Kitaoka, Takuya
N1 - Funding Information:
This research was supported by a Grant-in-Aid for Challenging Exploratory Research (16K14959) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The authors declare that there is no conflict of interest.
Publisher Copyright:
© 2017, Akadémiai Kiadó, Budapest, Hungary.
PY - 2017/8
Y1 - 2017/8
N2 - Paper-like porous composites of ceramic fibers and ZnO whiskers were prepared using a papermaking technique, followed by the in situ synthesis of a Pd catalyst on the ZnO whiskers using a facile impregnation method. The flexible Pd@ZnO papers had micrometer-sized pores of average diameter ca. 25 μm, which promoted the effective diffusion of reactants passing through an assembly of vertically stacked papers in a flow reactor. The catalytic efficiency of the stacked Pd@ZnO papers in a flow Suzuki–Miyaura cross-coupling (SMC) reaction to synthesize 4-methylbiphenyl from phenylboronic acid and 4-iodotoluene was higher than that of a bead-type Pd particulate catalyst in a reactor. Microchannels originating from the porous fiber-network microstructures in the stacked papers contributed to effective heterogeneous catalysis, possibly by enabling smooth diffusion of substrates to the surfaces of the Pd catalysts, as in a microreactor system. K2CO3, which was used as the base in the SMC reaction, was also immobilized in the paper-structured fibrous composites. Stacks of two types of paper, i.e., containing either Pd catalysts or K2CO3, significantly affected the SMC catalytic activity in a continuous microflow reaction. A combination of K2CO3 papers upstream and Pd@ZnO papers downstream in the flow system provided higher catalytic efficiency via on-site K2CO3-mediated borate formation of phenylboronic acid in the initial stage in the reactor. Tailoring of the stacking patterns of the paper-structured composites is expected to be effective for sequential SMC reaction and to improve catalytic process engineering.
AB - Paper-like porous composites of ceramic fibers and ZnO whiskers were prepared using a papermaking technique, followed by the in situ synthesis of a Pd catalyst on the ZnO whiskers using a facile impregnation method. The flexible Pd@ZnO papers had micrometer-sized pores of average diameter ca. 25 μm, which promoted the effective diffusion of reactants passing through an assembly of vertically stacked papers in a flow reactor. The catalytic efficiency of the stacked Pd@ZnO papers in a flow Suzuki–Miyaura cross-coupling (SMC) reaction to synthesize 4-methylbiphenyl from phenylboronic acid and 4-iodotoluene was higher than that of a bead-type Pd particulate catalyst in a reactor. Microchannels originating from the porous fiber-network microstructures in the stacked papers contributed to effective heterogeneous catalysis, possibly by enabling smooth diffusion of substrates to the surfaces of the Pd catalysts, as in a microreactor system. K2CO3, which was used as the base in the SMC reaction, was also immobilized in the paper-structured fibrous composites. Stacks of two types of paper, i.e., containing either Pd catalysts or K2CO3, significantly affected the SMC catalytic activity in a continuous microflow reaction. A combination of K2CO3 papers upstream and Pd@ZnO papers downstream in the flow system provided higher catalytic efficiency via on-site K2CO3-mediated borate formation of phenylboronic acid in the initial stage in the reactor. Tailoring of the stacking patterns of the paper-structured composites is expected to be effective for sequential SMC reaction and to improve catalytic process engineering.
UR - http://www.scopus.com/inward/record.url?scp=85016392900&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016392900&partnerID=8YFLogxK
U2 - 10.1007/s11144-017-1178-y
DO - 10.1007/s11144-017-1178-y
M3 - Article
AN - SCOPUS:85016392900
VL - 121
SP - 523
EP - 537
JO - Reaction Kinetics, Mechanisms and Catalysis
JF - Reaction Kinetics, Mechanisms and Catalysis
SN - 1878-5190
IS - 2
ER -