Multivariate signature scheme using quadratic forms

Takanori Yasuda, Tsuyoshi Takagi, Kouichi Sakurai

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

11 被引用数 (Scopus)

抄録

Multivariate Public Key Cryptosystems (MPKC) are candidates for post-quantum cryptography. MPKC has an advantage in that its encryption and decryption are relatively efficient. In this paper, we propose a multivariate signature scheme using quadratic forms. For a finite dimensional vector space V, it is known that there are exactly two equivalence classes of non-degenerate quadratic forms over V. We utilize the method to transform any non-degenerate quadratic form into the normal form of either of the two equivalence classes in order to construct a new signature scheme in MPKC. The signature generation of our scheme is between eight and nine times more efficient more than the multivariate signature scheme Rainbow at the level of 88-bit security. We show that the public keys of our scheme can not be represented by the public keys of other MPKC signature schemes and this means our scheme is immune to many attacks that depend on the form of the central map used by these schemes.

本文言語英語
ホスト出版物のタイトルPost-Quantum Cryptography - 5th International Workshop, PQCrypto 2013, Proceedings
ページ243-258
ページ数16
DOI
出版ステータス出版済み - 2013
イベント5th International Workshop on Post-Quantum Cryptography, PQCrypto 2013 - Limoges, フランス
継続期間: 6 4 20136 7 2013

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7932 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

その他

その他5th International Workshop on Post-Quantum Cryptography, PQCrypto 2013
国/地域フランス
CityLimoges
Period6/4/136/7/13

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Multivariate signature scheme using quadratic forms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル