Muon tomography in geoscientific research – A guide to best practice

Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Fritz Schlunegger, Mykhailo Vladymyrov

研究成果: Contribution to journalReview article査読

1 被引用数 (Scopus)

抄録

The use of muon tomography in geoscience projects has been continuously increasing over the past few years. This led to a variety of applications that often use custom-tailored solutions for data acquisition and processing. The respective know-how is splintered and mainly available in a semi-published state in various physics departments that developed these methods. This complicates the design of new studies and the decision whether muon tomography is a suitable tool and feasible for a specific geoscientific question. In this study we review the current state of how muon tomography has been applied in the field of geosciences with the goal of equipping interested geoscientists with the basic knowledge on the physical basics that constitute muon tomography. After an explanation of how muons are produced, how they traverse matter and how they are recorded, a showcase is made of recent applications. These studies show the variety of how muon tomography can be applied in experiments, such that interested readers may implement this technology for their own research. Finally, we provide a guide to best practice to help interested geoscientists decide if and how muon tomography could be implemented in their own research. We believe that through a better mutual understanding, new interdisciplinary collaborations can be initiated that advance the whole field of muon tomography.

本文言語英語
論文番号103842
ジャーナルEarth-Science Reviews
222
DOI
出版ステータス出版済み - 11 2021

All Science Journal Classification (ASJC) codes

  • 地球惑星科学(全般)

フィンガープリント

「Muon tomography in geoscientific research – A guide to best practice」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル