N = 2 Superconformal algebra and the entropy of calabi-yau manifolds

Tohru Eguchi, Kazuhiro Hikami

研究成果: ジャーナルへの寄稿学術誌査読

6 被引用数 (Scopus)

抄録

We use the representation theory of N = 2 superconformal algebra to study the elliptic genera of Calabi-Yau (CY) D-folds. We compute the entropy of CY manifolds from the growth rate of multiplicities of the massive (non-BPS) representations in the decomposition of their elliptic genera. We find that the entropy of CY manifolds of complex dimension D behaves differently depending on whether D is even or odd. When D is odd, CY entropy coincides with the entropy of the corresponding hyperKähler (D - 3)-folds due to a structural theorem on Jacobi forms. In particular, we find that the Calabi-Yau 3-fold has a vanishing entropy. At D > 3, using our previous results on hyperKähler manifolds, we find. When D is even, we find the behavior of CY entropy behaving as. These agree with Cardy's formula at large D.

本文言語英語
ページ(範囲)269-297
ページ数29
ジャーナルLetters in Mathematical Physics
92
3
DOI
出版ステータス出版済み - 2010
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「N = 2 Superconformal algebra and the entropy of calabi-yau manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル