NAD(P)H oxidase activation: A potential target mechanism for diabetic vascular complications, progressive β-cell dysfunction and metabolic syndrome

Toyoshi Inoguchi, Hajime Nawata

    研究成果: Contribution to journalReview article査読

    85 被引用数 (Scopus)

    抄録

    Both protein kinase C (PKC) activation and increased oxidative stress have been paid attention to as important causative factors for diabetic vascular complications. In this article, we show a PKC-dependent increase in oxidative stress in vascular tissues of diabetes and insulin resistant state. High glucose level and free fatty acids stimulate de novo diacylglycerol (DAG)-PKC pathway and subsequently stimulate reactive oxygen species (ROS) production through a PKC-dependent activation of NAD(P)H oxidase. Increasing evidence has also shown that NAD(P)H oxidase components are upregulated in micro- and macro- vascular tissues of animal models and patients of diabetes and obesity. It is also noted that increased intrinsic angiotensin II production may amplify such a PKC-dependent activation of NAD(P)H oxidase in diabetic vascular tissues. These mechanisms may play an important role in the diabetic vascular complications and the accelerated atherosclerosis associated with diabetes and obesity. In addition, recent reports have shown that NAD(P)H oxidases exist in pancreatic β-cells and adipocytes, and this oxidase-generated ROS production may play an important role in both the progressive β-cell dysfunction and the dysregulated adipocytokine production and subsequent obesity-induced metabolic syndrome. These results suggest that an NAD(P)H oxidase activation may be a useful therapeutic target for preventing diabetic vascular complications, progressive β-cell dysfunction and metabolic syndrome.

    本文言語英語
    ページ(範囲)495-501
    ページ数7
    ジャーナルCurrent Drug Targets
    6
    4
    DOI
    出版ステータス出版済み - 6 2005

    All Science Journal Classification (ASJC) codes

    • 分子医療
    • 薬理学
    • 創薬
    • 臨床生化学

    フィンガープリント

    「NAD(P)H oxidase activation: A potential target mechanism for diabetic vascular complications, progressive β-cell dysfunction and metabolic syndrome」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル