Nanostructure control of age-hardenable Al 2024 alloy by high-pressure torsion

Intan Fadhlina Mohamed, Seungwon Lee, Zenji Horita

研究成果: Contribution to journalConference article査読

3 被引用数 (Scopus)


A concurrent strengthening process by high-pressure torsion (HPT) and fine precipitation hardening of an Al 2024 alloy has been studied. The HPT was conducted on disks of the alloys under an applied pressure of 6 GPa for 0.75 and 5 turns with a rotation speed of 1 rpm at room temperature. The HPT processing leads to microstructural refinement with an average grain size of ∼240 nm and to an increase in hardness up to a saturation after 5 turns. Aging treatment is performed for sample after 5 turns at temperatures of 423 K for a maximum period up to 256 hours. The hardness increased above the hardness level after HPT processing through the subsequent aging. This study thus suggests that simultaneous hardening due to grain refinement and fine precipitation occurred by a combination of HPT processing and subsequent aging at 423 K.

ジャーナルIOP Conference Series: Materials Science and Engineering
出版ステータス出版済み - 2014
イベント6th International Conference on Nanomaterials by Severe Plastic Deformation, NanoSPD 2014 - Metz, フランス
継続期間: 6 30 20147 4 2014

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)

フィンガープリント 「Nanostructure control of age-hardenable Al 2024 alloy by high-pressure torsion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。