Neural network-based optimal adaptive tracking using genetic algorithms

Sisil Kumarawadu, Keigo Watanabe, Kiyotaka Izumi, Kazuo Kiguchi

研究成果: ジャーナルへの寄稿学術誌査読

6 被引用数 (Scopus)

抄録

This paper presents the use of neural networks (NNs) and genetic algorithms (GAs) to enhance the output tracking performance of partly known robotic systems. Two of the most potential approaches of adaptive control, i.e., the concept of variable structure control (VSC) and NN-based adaptive control, are ingeniously combined using GAs to achieve high-performance output tracking. GA is used to make the maximum use of different performance characteristics of two self-adaptive NN modules by finding the switching function which best combines them. The method will be valid for any rigid revolute robot system. Computer simulations on our active binocular head are included for illustration and verification.

本文言語英語
ページ(範囲)372-384
ページ数13
ジャーナルAsian Journal of Control
8
4
DOI
出版ステータス出版済み - 12月 2006
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学

フィンガープリント

「Neural network-based optimal adaptive tracking using genetic algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル