New lambert algorithm using the Hamilton-Jacobi-Bellman equation

Mai Bando, Hiroshi Yamakawa

研究成果: Contribution to journalArticle査読

20 被引用数 (Scopus)

抄録

A study was conducted to demonstrate the formulation of the new Lambert Algorithm using the Hamilton-Jacobi-Bellman Equation (HJB). The two-point boundary-value problem (TPBVP) of the Hamiltonian system was treated as an optimal control problem where the Lagrangian function played a role as a performance index. The approach demonstrated in the study was based on the expansion of the value function in the Chebyshev series with unknown coefficients, considering the computational advantages of the use of Chebyshev polynomials. The differential expressions that arose in the HJB equation were expanded in Chebyshev series with the unknown coefficients. The new algorithm had the potential to provide a solution to the TPVBP using the spectral information about the gravitation potential function and was applicable to the problem under a higher-order perturbed potential function without any modification.

本文言語英語
ページ(範囲)1000-1008
ページ数9
ジャーナルJournal of Guidance, Control, and Dynamics
33
3
DOI
出版ステータス出版済み - 2010
外部発表はい

All Science Journal Classification (ASJC) codes

  • 航空宇宙工学
  • 制御およびシステム工学
  • 宇宙惑星科学
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「New lambert algorithm using the Hamilton-Jacobi-Bellman equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル