Newton polyhedra and the Bergman kernel

研究成果: Contribution to journalArticle査読

11 被引用数 (Scopus)

抄録

The purpose of this paper is to study singularities of the Bergman kernel at the boundary for pseudoconvex domains of finite type from the viewpoint of the theory of singularities. Under some assumptions on a domainΩin ℂn+1, the Bergman kernel B(z) of Ωtakes the form near a boundary point p: B(Z) = Φ(w, ρ)/ρ2+2/dF (log(1/ρ))mF-1, where (w, ρ) is some polar coordinates on a nontangential cone Λ with apex at ρ and ρ means the distance from the boundary. Here Φ admits some asymptotic expansion with respect to the variables ρ1/m and log(1/ρ) as ρ → 0 on Λ The values of dF- > 0, mF ∈ ℤ + and m ∈ ℕ are determined by geometrical properties of the Newton polyhedron of defining functions of domains and the limit of Φ as ρ → 0 on Λ is a positive constant depending only on the Newton principal part of the defining function. Analogous results are obtained in the case of the Szegö kernel.

本文言語英語
ページ(範囲)405-440
ページ数36
ジャーナルMathematische Zeitschrift
246
3
DOI
出版ステータス出版済み - 3 1 2004

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

フィンガープリント 「Newton polyhedra and the Bergman kernel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル