Non-abelian zeta functions for function fields

研究成果: ジャーナルへの寄稿記事

2 引用 (Scopus)

抄録

In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, We first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a "weighted count" on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these points. Then we define non-abelian L-functions for curves over finite fields using integrations of Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.

元の言語英語
ページ(範囲)973-1017
ページ数45
ジャーナルAmerican Journal of Mathematics
127
発行部数5
DOI
出版物ステータス出版済み - 1 1 2005

Fingerprint

Function Fields
Riemann zeta function
Galois field
Moduli Space
Curve
Stable Vector Bundles
Automorphic Forms
Eisenstein Series
Rational Points
L-function
Modulus
Count

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

これを引用

Non-abelian zeta functions for function fields. / Weng, Lin.

:: American Journal of Mathematics, 巻 127, 番号 5, 01.01.2005, p. 973-1017.

研究成果: ジャーナルへの寄稿記事

@article{602bca70d47e4691a7a812405b471957,
title = "Non-abelian zeta functions for function fields",
abstract = "In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, We first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a {"}weighted count{"} on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these points. Then we define non-abelian L-functions for curves over finite fields using integrations of Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.",
author = "Lin Weng",
year = "2005",
month = "1",
day = "1",
doi = "10.1353/ajm.2005.0035",
language = "English",
volume = "127",
pages = "973--1017",
journal = "American Journal of Mathematics",
issn = "0002-9327",
publisher = "Johns Hopkins University Press",
number = "5",

}

TY - JOUR

T1 - Non-abelian zeta functions for function fields

AU - Weng, Lin

PY - 2005/1/1

Y1 - 2005/1/1

N2 - In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, We first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a "weighted count" on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these points. Then we define non-abelian L-functions for curves over finite fields using integrations of Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.

AB - In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, We first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a "weighted count" on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these points. Then we define non-abelian L-functions for curves over finite fields using integrations of Eisenstein series associated to L2-automorphic forms over certain generalized moduli spaces.

UR - http://www.scopus.com/inward/record.url?scp=27544464337&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=27544464337&partnerID=8YFLogxK

U2 - 10.1353/ajm.2005.0035

DO - 10.1353/ajm.2005.0035

M3 - Article

VL - 127

SP - 973

EP - 1017

JO - American Journal of Mathematics

JF - American Journal of Mathematics

SN - 0002-9327

IS - 5

ER -