Non-iterative symmetric two-dimensional linear discriminant analysis

Kohei Inoue, Kenji Hara, Kiichi Urahama

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

Linear discriminant analysis (LDA) is one of the wellknown schemes for feature extraction and dimensionality reduction of labeled data. Recently, two-dimensional LDA (2DLDA) for matrices such as images has been reformulated into symmetric 2DLDA (S2DLDA), which is solved by an iterative algorithm. In this paper, we propose a non-iterative S2DLDA and experimentally show that the proposed method achieves comparable classification accuracy with the conventional S2DLDA, while the proposed method is computationally more efficient than the conventional S2DLDA.

本文言語英語
ページ(範囲)926-929
ページ数4
ジャーナルIEICE Transactions on Information and Systems
E94-D
4
DOI
出版ステータス出版済み - 4 2011

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence

フィンガープリント 「Non-iterative symmetric two-dimensional linear discriminant analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル