Note on twisted elliptic genus of K3 surface

Tohru Eguchi, Kazuhiro Hikami

研究成果: Contribution to journalArticle査読

75 被引用数 (Scopus)

抄録

We discuss the possibility of Mathieu group M24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M24. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

本文言語英語
ページ(範囲)446-455
ページ数10
ジャーナルPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
694
4-5
DOI
出版ステータス出版済み - 1 3 2011
外部発表はい

All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学

フィンガープリント

「Note on twisted elliptic genus of K3 surface」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル