Numerical Simulation of DeNOx Performance by Repetitive Pulsed Discharge added by Hydrocarbon such as Ethylene

Hironobu Kusunoki, Hiroshi Ibaraki, Takuto Araki, Kazuo Onda, Kohei Ito

研究成果: Contribution to journalArticle査読


Emission regulation is being tightened up recently to prevent expansion of air pollution. Economic and efficient technologies are desired to process NOx generated in combustion of fossil fuel. One of the candidate technologies to process NOx is the denitrification of flue gas by pulsed corona discharge, which has been demonstrated experimentally to have the high deNOx performance. However, the optimization of operation conditions and the appropriate understanding of the deNOx process are still remained not to be cleared. Therefore, we have simulated in this study the deNOx process added by hydrocarbon such as ethylene to give its proper operation conditions and its main reaction paths to remove NOx, following our previous study on ammonia addition. The simulated results show that the removal efficiency in a case of ethylene addition becomes lower than that in ammonia addition, but the deNOx energy consumption rate becomes lower than the ammonia injection case. However, the ethylene injection leads to produce the pollutant of formaldehyde, which limits the allowable amount of injected ethylene. In a case of propylene injection its deNOx performance is better than the ethylene addition case, because propylene reacts with OH radical more than ethylene to oxide NOx. However, formaldehyde is also produced in propylene injection case, limiting the allowable amount of injected propylene.

ジャーナルIEEJ Transactions on Power and Energy
出版ステータス出版済み - 2005

All Science Journal Classification (ASJC) codes

  • エネルギー工学および電力技術
  • 電子工学および電気工学


「Numerical Simulation of DeNO<sub>x</sub> Performance by Repetitive Pulsed Discharge added by Hydrocarbon such as Ethylene」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。