Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition

Osamu Moriue, Masato Mikami, Naoya Kojima, Christian Eigenbrod

研究成果: Contribution to conferencePaper査読

抄録

Spontaneous ignition of single n-heptane droplets in a constant volume filled with air was numerically simulated with the spherical symmetry. The numerical model was fully transient. It continues calculation even after the droplet has completely vaporized, and therefore can predict pre-vaporized ignition. Droplet was initially at room temperature, and its diameter was 1-100 μm. When the overall equivalence ratio (φ) was fixed to be sufficiently large, there was no ignition limit in terms of initial droplet diameter (d0), and the ignition delay took a minimum value at certain d0. In such a case, transition from the heterogeneous ignition to the homogeneous ignition with decreasing d0 was observed. When d0 was fixed to be so small that the ignition would not occur in an infinite volume of air, the ignition delay took a minimum value at certain φ, which was less than unity. Two-stage ignition behavior was studied with this model. Ignition delay of a cool flame had the dependence on d0 that was similar to that of ignition delay of a hot flame when φ is unity. When φ was almost zero, the ignition limit for cool flame in terms of d0 was not identified unlike that for hot flame. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).

本文言語英語
ページ21
ページ数1
出版ステータス出版済み - 2004
外部発表はい
イベント30th International Symposium on Combustion, Abstracts of Symposium Papers - Chicago, IL, 米国
継続期間: 7 25 20047 30 2004

その他

その他30th International Symposium on Combustion, Abstracts of Symposium Papers
国/地域米国
CityChicago, IL
Period7/25/047/30/04

All Science Journal Classification (ASJC) codes

  • 工学(全般)

フィンガープリント

「Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル