TY - GEN
T1 - Numerical Study of Wake Interactions between Two Floating Offshore Wind Turbines
AU - Huang, Yang
AU - Wan, Decheng
AU - Hu, Changhong
N1 - Funding Information:
This work is supported by the National Natural Science Foundation of China (51490675, 11432009, 51579145), Chang Jiang Scholars Program (T2014099), Shanghai Excellent Academic Leaders Program (17XD1402300), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2013022), Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09) and Lloyd's Register Foundation for doctoral student, to which the authors are most grateful.
Funding Information:
This work is supported by the National Natural Science Foundation of China (51490675, 11432009, 51579145), Chang Jiang Scholars Program (T2014099), Shanghai Excellent Academic Leaders Program (17XD1402300), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2013022), Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09) and Lloyd’s Register Foundation for doctoral student, to which the authors are most grateful.
Publisher Copyright:
Copyright © 2018 by the International Society of Offshore and Polar Engineers (ISOPE)
PY - 2018
Y1 - 2018
N2 - The wake interaction between floating offshore wind turbines (FOWTs) has a significant effect on the FOWT's power output, system dynamics responses and structural loadings. To better understand the wake interaction phenomenon in floating wind farms, fully coupled simulations considering the coupling effects between the wind turbine, floating platform and mooring system for FOWTs are necessary. In the present paper, the unsteady actuator line model (UALM) is embedded into in-house CFD solver naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool named FOWT-UALM-SJTU for numerical simulations of FOWTs. Coupled aero-hydrodynamic simulations of two OC3 Hywindspar FOWT models in tandem layout under shear wind and regular wave conditions are performed using this tool. The unsteady aerodynamics of wind turbines are given by the UALM, and the hydrodynamic responses of floating platforms and mooring tensions are predicted by naoe-FOAM-SJTU. From the simulations, unsteady aerodynamic characteristics can be extracted including the rotor power and thrust as well as detailed wake flow information, and hydrodynamic responses such as the six-degree-of-freedom motions and mooring tensions are also available. Moreover, the influence of wake interaction on the performance of FOWTs is studied. It can be found that strong wake interaction phenomenon is observed and the unsteady aero-hydrodynamic responses of downstream FOWT system are greatly affected by the wake interaction.
AB - The wake interaction between floating offshore wind turbines (FOWTs) has a significant effect on the FOWT's power output, system dynamics responses and structural loadings. To better understand the wake interaction phenomenon in floating wind farms, fully coupled simulations considering the coupling effects between the wind turbine, floating platform and mooring system for FOWTs are necessary. In the present paper, the unsteady actuator line model (UALM) is embedded into in-house CFD solver naoe-FOAM-SJTU to establish a fully coupled CFD analysis tool named FOWT-UALM-SJTU for numerical simulations of FOWTs. Coupled aero-hydrodynamic simulations of two OC3 Hywindspar FOWT models in tandem layout under shear wind and regular wave conditions are performed using this tool. The unsteady aerodynamics of wind turbines are given by the UALM, and the hydrodynamic responses of floating platforms and mooring tensions are predicted by naoe-FOAM-SJTU. From the simulations, unsteady aerodynamic characteristics can be extracted including the rotor power and thrust as well as detailed wake flow information, and hydrodynamic responses such as the six-degree-of-freedom motions and mooring tensions are also available. Moreover, the influence of wake interaction on the performance of FOWTs is studied. It can be found that strong wake interaction phenomenon is observed and the unsteady aero-hydrodynamic responses of downstream FOWT system are greatly affected by the wake interaction.
UR - http://www.scopus.com/inward/record.url?scp=85053447631&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053447631&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85053447631
SN - 9781880653876
T3 - Proceedings of the International Offshore and Polar Engineering Conference
SP - 541
EP - 548
BT - Proceedings of the 28th International Ocean and Polar Engineering Conference, ISOPE 2018
PB - International Society of Offshore and Polar Engineers
T2 - 28th International Ocean and Polar Engineering Conference, ISOPE 2018
Y2 - 10 June 2018 through 15 June 2018
ER -