Object detection based on spatiotemporal background models

Satoshi Yoshinaga, Atsushi Shimada, Hajime Nagahara, Rin Ichiro Taniguchi

研究成果: ジャーナルへの寄稿学術誌査読

29 被引用数 (Scopus)


We present a robust background model for object detection and its performance evaluation using the database of the Background Models Challenge (BMC). Background models should detect foreground objects robustly against background changes, such as "illumination changes" and "dynamic changes". In this paper, we propose two types of spatiotemporal background modeling frameworks that can adapt to illumination and dynamic changes in the background. Spatial information can be used to absorb the effects of illumination changes because they affect not only a target pixel but also its neighboring pixels. Additionally, temporal information is useful in handling the dynamic changes, which are observed repeatedly. To establish the spatiotemporal background model, our frameworks model an illumination invariant feature and a similarity of intensity changes among a set of pixels according to statistical models, respectively. Experimental results obtained for the BMC database show that our models can detect foreground objects robustly against background changes.

ジャーナルComputer Vision and Image Understanding
出版ステータス出版済み - 5月 2014

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • コンピュータ ビジョンおよびパターン認識


「Object detection based on spatiotemporal background models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。