抄録
CaAl2Si2 type Zintl phases have long been known to be promising thermoelectric materials. Here we report for the first time on the thermoelectric properties of CaMg2Sb2 along with the transport properties of CaZn2Sb2-CaMg2Sb2 solid solution. The charge carrier tuning in this system was carried out by substituting divalent Ca2+ with monovalent Na+. To check a possible band convergence, we applied an effective mass analysis to our samples and found an abrupt doubling of the samples' effective masses as the composition switches from Zn-rich to Mg-rich. We further analyzed the effect that alloy scattering plays in the lattice thermal conductivity of our samples with a Modified Klemens model. We showed that the reduction seen in the lattice thermal conductivity of the alloyed samples can be well explained based on the mass difference of Mg and Zn in the poly-anionic metal site. Our best p-doped sample with a composition of Ca.99Na.01MgZnSb2 displays a relatively high peak zT of 0.87 at 850 K.
本文言語 | 英語 |
---|---|
ページ(範囲) | 9437-9444 |
ページ数 | 8 |
ジャーナル | Journal of Materials Chemistry A |
巻 | 6 |
号 | 20 |
DOI | |
出版ステータス | 出版済み - 2018 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 化学 (全般)
- 再生可能エネルギー、持続可能性、環境
- 材料科学(全般)