On directional blow-up for quasilinear parabolic equations with fast diffusion

Yukihiro Seki

研究成果: Contribution to journalArticle

17 引用 (Scopus)

抜粋

We discuss blow-up at space infinity of solutions to quasilinear parabolic equations of the form ut = Δ φ{symbol} (u) + f (u) with initial data u0 ∈ L (RN), where φ{symbol} and f are nonnegative functions satisfying φ{symbol} ≤ 0 and ∫1 d ξ / f (ξ) < ∞. We study nonnegative blow-up solutions whose blow-up times coincide with those of solutions to the O.D.E. v = f (v) with initial data {norm of matrix} u0 {norm of matrix}L∞ (RN). We prove that such a solution blows up only at space infinity and possesses blow-up directions and that they are completely characterized by behavior of initial data. Moreover, necessary and sufficient conditions on initial data for blow-up at minimal blow-up time are also investigated.

元の言語英語
ページ(範囲)572-587
ページ数16
ジャーナルJournal of Mathematical Analysis and Applications
338
発行部数1
DOI
出版物ステータス出版済み - 2 1 2008

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

フィンガープリント On directional blow-up for quasilinear parabolic equations with fast diffusion' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用