On insecurity of the side channel attack countermeasure using addition-subtraction chains under distinguishability between addition and doubling

Katsuyuki Okeya, Kouichi Sakurai

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

37 被引用数 (Scopus)

抄録

We show that a randomized addition-subtraction chains countermeasure against side channel attacks is vulnerable to SPA attack, a kind of side channel attack, under distinguishability between addition and doubling. A side channel attackis an attackthat takes advantage of information leaked during execution of a cryptographic procedure. The randomized addition-subtraction chains countermeasure has been proposed by Oswald-Aigner, and is a random decision inserted into computations. However, its immunity to side channel attacks is still controversial. As for timing attack, a kind of side channel attack, the randomized addition-subtraction chains countermeasure is also vulnerable. Moreover, compared with other countermeasures against side channel attacks, the randomized addition-subtraction chains countermeasure, after being improved to prevent side channel attacks, is much slower.

本文言語英語
ホスト出版物のタイトルInformation Security and Privacy - 7th Australasian Conference, ACISP 2002, Proceedings
編集者Lynn Batten, Jennifer Seberry
出版社Springer Verlag
ページ420-435
ページ数16
ISBN(印刷版)3540438610, 9783540438618
DOI
出版ステータス出版済み - 1 1 2002
イベント7th Australasian Conference on Information Security and Privacy, ACISP 2002 - Melbourne, オーストラリア
継続期間: 7 3 20027 5 2002

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2384
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

その他

その他7th Australasian Conference on Information Security and Privacy, ACISP 2002
国/地域オーストラリア
CityMelbourne
Period7/3/027/5/02

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「On insecurity of the side channel attack countermeasure using addition-subtraction chains under distinguishability between addition and doubling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル